Suggested Solution of Revision Exercise 1

Question 1. Suppose that $\lim a_n = 3$. Using the definition of limit, show that

$$\lim_{n \to \infty} \frac{a_n^2 + 1}{a_n - 2} = 10$$

Solution. Note that for any $n \in \mathbb{N}$,

$$\left|\frac{a_n^2 + 1}{a_n - 2} - 10\right| = \left|\frac{a_n^2 - 10a_n + 21}{a_n - 2}\right| = \frac{|a_n - 7|}{|a_n - 2|}|a_n - 3|.$$

Since $\lim a_n = 3$, there exists $N_1 \in \mathbb{N}$ such that

$$|a_n - 3| < \frac{1}{2}, \quad \forall n \ge N_1.$$

i.e., $2.5 < a_n < 3.5$. Hence for any $n \ge N_1$, we have

$$0.5 < |a_n - 2| < 1.5$$
 and $3.5 < |a_n - 7| < 4.5$.

This implies that

$$\frac{|a_n - 7|}{|a_n - 2|} < \frac{4.5}{0.5} = 9, \quad \forall n \ge N_1.$$

Let $\varepsilon > 0$. Since $\lim a_n = 3$, there exists $N_2 \in \mathbb{N}$ such that

$$|a_n - 3| < \frac{\varepsilon}{9}, \quad \forall n \ge N_2$$

Take $N = \max\{N_1, N_2\}$. Then for any $n \ge N$,

$$\left|\frac{a_n^2 + 1}{a_n - 2} - 10\right| = \frac{|a_n - 7|}{|a_n - 2|}|a_n - 3| < 9 \cdot \frac{\varepsilon}{9} = \varepsilon.$$

The result follows.

Question 2. Let (x_n) be a sequence of non-negative numbers. Suppose that

$$\lim_{n \to \infty} (-1)^n x_n$$

exists in \mathbb{R} . Show that (x_n) converges and find its limit.

Solution. Since $((-1)^n x_n)$ is convergent, its subsequences $((-1)^{2n} x_{2n})$ and $((-1)^{2n-1} x_{2n-1})$ are both convergent and have the same limit. Note that for each n,

$$(-1)^{2n}x_{2n} = x_{2n} \ge 0$$
 and $(-1)^{2n-1}x_{2n-1} = -x_{2n-1} \le 0.$

It follows that

$$0 \le \lim((-1)^{2n} x_{2n}) = \lim((-1)^n x_n) = \lim(-1)^{2n-1} x_{2n-1} \le 0.$$

Hence $\lim_{n \to \infty} (-1)^n x_n = 0$. Then

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} |x_n| = \lim_{n \to \infty} |(-1)^n x_n| = \left| \lim_{n \to \infty} (-1)^n x_n \right| = 0.$$

Prepared by Ernest Fan

Question 3. Let (x_n) be a bounded sequence of real numbers. Define

 $E = \{x \in \mathbb{R} : \text{there is a subsequence } (x_{n_k}) \text{ of } (x_n) \text{ that converges to } x.\}$ Let $\alpha = \overline{\lim} x_n$. Show that $\alpha \in E$ and $\alpha = \sup E$.

Solution. Recall the definition of limit superior. i.e.,

$$\alpha = \overline{\lim} x_n = \lim_k \left(\sup_{n \ge k} x_n \right) = \lim_k u_k, \quad \text{where } u_k = \sup_{n \ge k} x_n.$$

To show that $\alpha \in E$, we need to find a subsequence (x_{n_k}) such that it converges to α . In other words, we need to pick an strictly increasing sequence of natural numbers $n_1 < n_2 < n_3 < \cdots$. This will be done by choosing n_k 's inductively. Write $n_0 = 1$. For each $k \in \mathbb{N}$, consider $u_{n_{k-1}+1} = \sup_{n > n_{k-1}} x_n$. By definition of supremum, there exists $n_k > n_{k-1}$ such that

$$u_{n_{k-1}+1} - \frac{1}{k} < x_{n_k} \le u_{n_{k-1}+1}.$$
(1)

Notice that $\alpha = \lim_{n \to \infty} u_n$ and $(u_{n_{k-1}+1})$ is a subsequence of (u_n) . Hence $(u_{n_{k-1}+1})$ converges to α . Therefore the left expression and right expression in (1) both converge to α . By **Squeeze theorem**, it follows that

$$\alpha = \lim x_{n_k}.$$

To show that $\alpha = \sup E$, first note that $\alpha \leq \sup E$ because we have shown that $\alpha \in E$. On the other hand, let $x \in E$ and (x_{n_k}) be a subsequence of (x_n) that converges to x. Since $n_k \geq k$ for all $k \in \mathbb{N}$,

$$x_{n_k} \le u_k, \quad \forall k \in \mathbb{N}.$$

Hence $x \leq \alpha$ after taking limits. Since $x \in E$ is arbitrary, $\sup E \leq \alpha$.

Question 4. Let a be a positive real number and $x_1 > \sqrt{a}$. Define the sequence (x_n) by

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right).$$

Prove that (x_n) is convergent and $\lim x_n = \sqrt{a}$.

Solution. We first show that $x_n \ge \sqrt{a}$ for all $n \in \mathbb{N}$ by induction. The case for n = 1 is given. Note that

$$x_{n+1}^{2} = \frac{1}{4} \left(x_{n} + \frac{a}{x_{n}} \right)^{2} = \frac{1}{4} \left(x_{n} - \frac{a}{x_{n}} \right)^{2} + a \ge a$$

Since obviously $x_n \ge 0$ for all $n \in \mathbb{N}$, it follows that $x_{n+1} \ge \sqrt{a}$. Now, for any $n \in \mathbb{N}$,

$$x_{n+1} - x_n = \frac{1}{2} \left(\frac{a}{x_n} - x_n \right) \le \frac{1}{2} \left(\frac{a}{\sqrt{a}} - \sqrt{a} \right) = 0.$$

Hence (x_n) is a decreasing sequence and it is bounded below by \sqrt{a} . By Monotone Convergence Theorem, (x_n) is convergent. Let $x = \lim x_n$. Then

$$x = \frac{1}{2} \left(x + \frac{a}{x} \right).$$

Solving gives $x = \pm \sqrt{a}$. Since $x_n \ge \sqrt{a}$ for all $n \in \mathbb{N}$, $x \ge \sqrt{a}$. It follows that $x = \sqrt{a}$.

Prepared by Ernest Fan

Question 5.

- (a) State the **Bolzano-Weierstrass Theorem**.
- (b) State the **Nested Intervals Property**.
- (c) Using the Bolzano-Weierstrass Theorem, prove the Nested Intervals Property.

Solution. .

- (a) A bounded sequence of real numbers has a convergent subsequence.
- (b) Suppose $I_n = [a_n, b_n]$ for each $n \in \mathbb{N}$ is a nested sequence of closed bounded intervals. i.e.,

$$I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq I_{n+1} \supseteq \cdots$$

Then there exists a number $\xi \in \mathbb{R}$ such that $\xi \in I_n$ for all $n \in \mathbb{N}$. i.e., $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$. Furthermore, if $\lim(b_n - a_n) = 0$, then the number ξ is unique.

(c) For the first part of the theorem, we need to find $\xi \in \mathbb{R}$ such that $\xi \in I_n$ for all $n \in \mathbb{N}$ by Bolzano-Weierstrass Theorem. Consider the sequence (a_n) of real numbers. By Bolzano-Weierstrass Theorem, there exists a subsequence (a_{n_k}) of (a_n) that converges to some $\xi \in \mathbb{R}$. We need to show that $\xi \in I_m$ for all $m \in \mathbb{N}$.

Let $m \in \mathbb{N}$. There exists $K \in \mathbb{N}$ such that $n_K \geq m$. Hence

$$a_m \le a_{n_K} \le a_{n_k} \le b_{n_k} \le b_{n_K} \le b_m, \quad \forall k \ge K.$$

In particular, we have

$$a_m \le a_{n_k} \le b_m, \quad \forall k \ge K.$$

Taking limits at $k \to \infty$, it follows that $a_m \leq \xi \leq b_m$. i.e., $\xi \in I_m$.

For the second part of the theorem, we further assume that $\lim(b_n - a_n) = 0$. We need to show that whenever $\eta \in I_n$ for all $n \in \mathbb{N}$, then $\eta = \xi$. This can be seen by observing

$$a_{n_k} \le \eta \le b_{n_k} \implies 0 \le \eta - a_{n_k} \le b_{n_k} - a_{n_k}, \quad \forall k \in \mathbb{N}$$

and then take limits.